Brain-based individual difference measures of reading skill in deaf adults Alison Mehravari¹, Lindsay Klarman¹, Karen Emmorey², Lee Osterhout¹ ¹University of Washington, Seattle, WA, USA, ²San Diego State University, San Diego, CA, USA Contact: amehrava@uw.edu

Introduction

How do we teach children to read?

Usually based on the sounds of language

What if those children are deaf?

Reading can be difficult for many (but not all) deaf individuals:

- 60% of deaf high school graduates read at or below a 4th grade reading level³
- But: 10% read above an 8th grade level³

Why? There is disagreement². The reasons matter for determining the best educational strategies and language environments for deaf children.

Our goal: Use real-time measures of language processing (ERPs) to understand how some deaf individuals read more proficiently than others.

Specifically:

- Do deaf and hearing individuals read proficiently using the same language processing mechanisms?
- Do deaf individuals from <u>different language</u> 2) <u>backgrounds</u> (spoken vs. signed) read proficiently using the same language processing mechanisms?

Methods

Participants: Severely/profoundly prelingually (<2 years of age) deaf adults (n=40), Age-matched hearing controls (n=22)

Procedure: Visual word-by-word presentation of stimuli, continuous EEG recorded from 19 scalp electrodes (10-20 system)

Sentence Violations (30 sentences/condition)

Well formed:	The huge house still <u>belongs</u> to my aunt.
Agreement violation:	The huge houses still <u>belongs</u> to my aunt.
Semantic violation:	The huge house still <u>listens</u> to my aunt.
Double semantic &	The huge houses still <u>listens</u> to my aunt.
agreement violation:	

Acceptability judgment at end of sentence. ERPs computed to onset of critical (underlined) word. Words presented for 600ms, 200ms ISI. Word Pairs (30 pairs/condition)

Unrelated	raid – pear
Phonologically related	lair – pear
Orthographically related	dear – pear
Phonologically &	wear – pear
orthographically related	

Lexical decision judgment after both words. ERPs computed to onset of target word. Prime presented for 600ms, 200ms ISI, target 800ms.

Subject/behavioral data: **Standardized reading** comprehension: Woodcock Reading Mastery Test word and passage comprehension Language background: Self-rated ASL proficiency, language usage and history (1-7 scale, 1=all spoken, 7=all manual/signed)

Reading comprehension Participant characteristics otal R reher 9 *** 20 Deaf Hearing n=40 n=22 **2. Syntactic** Hearing (n=22) **Well-formed sentences** (agreement) MA Pz ∦₩ violations in _____ Mini/ **Agreement violations** sentences 3μν *P600* **900** 300 *p* < 0.001 Hearing (n=22) **3. Semantic** violations in p = 0.01Well-formed sentences sentences _____ Nam **Semantic violations**

4. What predicts better reading skill – responses to syntax or semantics?

Hearing readers: Larger P600 to syntactic violations predicts better reading skill?

Multiple regression	
D^2 total D^2 adi E	-

Reading Comprehension Score 0.178 0.041 1.299 (3, 18) 0.305 Predictors b (SE) tpP600 size: syntactic errors 1.00 0.57 1.75 0.097 Speechreading Years Education 0.01 0.11 0.13 0.901	Outcome:	R^2 total	R^2 adj	$F_{\rm total}$	p
Predictors b (SE) t p P600 size: syntactic errors 1.00 0.57 1.75 0.097 Speechreading 0.01 0.11 0.13 0.901 Years Education 1.07 0.97 1.11 0.283	Reading Comprehension Score	0.178	0.041	1.299 (3, 18)	0.305
P600 size: syntactic errors1.000.571.750.097errors0.010.110.130.901Speechreading0.010.110.130.901Years Education1.070.971.110.283	Predictors	b	(SE)	t	p
Speechreading0.010.110.130.901Years Education1.070.971.110.283	P600 size: syntactic errors	1.00	0.57	1.75	0.097
Years Education 1.07 0.97 1.11 0.283	Speechreading	0.01	0.11	0.13	0.901
	Years Education	1.07	0.97	1.11	0.283

5. Double semantic and agreement violations Hearing (n=22) Deaf (n=40) *p* < 0.001 Pz ₩ \sim \sim no P600 P600 *p* = 0.639 p = 0.001

---- Double semantic and agreement violations

Results

Both groups show an N400 to semantic violations in sentences.

Deaf readers: Larger N400 to semantic violations predicts better reading skill

Multiple regression				
Outcome:	R^2 total R^2 adj F_{total}			
Reading Comprehension Score	0.62	0.58	14.273 (4, 35)	<0
<u>Predictors</u>	b	(SE)	t	
N400 size: semantic errors	2.26	1.04	2.18	C
Speechreading	0.46	0.11	4.00	<0
Growing Up Language	0.21	1.03	0.20	C
Years Education	3.40	1.01	3.37	0

Multiple regression – deaf readers

Outcome:	R^2 total	R^2 adj	F _{total}	
Reading Comprehension Score	0.70	0.67	20.742 (4, 35)	<0
Predictors	b	(SE)	<i>t</i>	
N400 size: combined errors	2.93	0.74	3.99	<0
Speechreading	0.43	0.10	4.19	<0
Growing Up Language	-0.02	0.90	-0.02	0
Years Education	3.60	0.89	4.03	<0

Conclusions

The best deaf readers have larger N400s to semantic and combined semantic+syntactic sentence violations.

This suggests that **the best deaf readers** focus more on meaning than grammar.

• Plausible: The "good enough" parsing strategy¹

Hearing readers appear to be different. The best hearing readers seem to have the largest responses to grammatical violations.

This suggests teaching strategies that can be tested with deaf children. Focusing more on vocabulary and relationships between words rather than 100% precise grammatical parsing?

Also: Proof of concept that **individual ERP** responses can predict reading **comprehension** in highly variable populations. The variation is systematic.

Future Directions

Final sample size:

- 45 deaf participants
- 45 hearing participants

Final analysis:

- Multiple regression to find best predictors of:
 - Better reading skill
 - Larger ERP responses

Include both groups in the same model Future projects: Similar research in deaf children, in homogenous language groups...

References

¹Ferreira, F. & Partson, N.D. (2007). The 'Good Enough' approach to language comprehension. Language & Linguistics Compass, 1(1-2): 71-83. ²Mayberry, R.I., del Giudice, A.A., & Lieberman, A.M. (2011). Reading achievement in relation to phonological coding and awareness in deaf readers: A meta-analysis. Journal of Deaf Studies and Deaf Education, 16(2), 164-188.

³Qi, S. & Mitchell, R.E. (2012). Large-scale academic achievement testing of deaf and hardof-hearing students: Past, present, and future. Journal of Deaf Studies and Deaf *Education*, *17*(1): 1-18.

Supported by NIH F31DC013700, NSF 1261501, NIH T32DC005361, the University of Washington Department of Psychology, and the Seattle ARCS Foundation

).001

0.001 0.5

0.841 0.02 0.002 0.40

Ŋ 0.001

0.001 0.49 0.987 0.00 0.001 0.42