

The neural correlates of comprehending American Sign Language-English code-blends

Jill Weisberg, Stephen McCullough, Jennifer Petrich, & Karen Emmorey Laboratory for Language & Cognitive Neuroscience, San Diego State University

Introduction

Bimodal bilinguals often "code-blend", producing signs and words simultaneously, which can facilitate comprehension in both the signed and spoken languages (Emmorey, Petrich, & Gollan, 2012. Bilingual processing of ASL-English code-blends: The consequences of accessing two lexical representations simultaneously. Journal of Memory and Language, 67:199-210).

- 1) What brain regions are recruited during code-blend comprehension?
- 2) What brain regions mediate the behavioral facilitation observed for code-blend comprehension?
 - · Is facilitation associated with increased or decreased activation?

Methods

Participants:

13 hearing native ASL-English bilingual adults (6 female, mean age = 26.85)

Task & Procedure:

60 unique items (trials) per language per subject

Semantic decision task: Is it edible?

Control decision task: Is the dot on the chin black?

10 trials 30 sec

FNG

30 sec Still + tone

10 trials

Stimuli:

- 18 lists of 10 nouns (mean Celex frequency = 3.05, range = 0 6.41)
- Lists counterbalanced across subjects
- Baseline task: silent model at rest with dot on chin, ½ with audible tone

Each item filmed with hearing native signer producing:

- a) an ASL sign translation (ASL)
- b) an audiovisual English word (ENG)
- c) signed and spoken word simultaneously (code-blend, or CB)

20 sec 30 sec Still fixation

MRI acquisition

- GE 3T, gradient echo echo-planar imaging
- TR = 2s; FOV = 240mm; 30 4.5mm contiguous sagittal slices

MRI Analysis

ASL

- General linear model, multiple regression using AFNI
- Mixed effects group ANOVA on individuals' beta weights

Results Code-blending Code-blends recruited: Code-blend > Still **Behavioral** L inferior frontal gyrus Semantic decisions were: L premotor cortex L/R STG (anterior) • faster for code-blends than for ASL, p < .005 L/R STG (posterior) • faster for English than for ASL, p < .05 L Lingual gyrus · equally fast for English and code-blends Code-blend Perception vs. ASL ASL > CB Language vs. Baseline ENG > Still ENG vs. ASL English recruited: L inferior frontal gyrus L premotor cortex L/R STG (anterior) I IFG (BA 44) R IFG (BA 9) L STG (BA 22) ASL > Still 0.15 ASL recruited: L/R inferior frontal gyrus ENG > ASL L premotor cortex cb cb ASL > ENG eng asl eng asl -0.05 L/R STG (posterior) Precentral gyrus (BA 4/6) L Lingual gyrus (BA 19) R STG (BA 22) L Lingual gyrus eng

Conclusions

- Decreased activity for code-blend comprehension in frontal language and posterior visual regions may reflect reduced effort when ASL comprehension is aided by redundant cues from English.
- Similarly, in left STG the trend toward decreased activity during code-blend perception may reflect reduced effort when English comprehension is aided by redundant cues from ASL.